
Challenges and Opportunities for Dataflow
Processing on Exascale Computers

Justin M. Wozniak,∗† Michael Wilde,∗† Ian T. Foster∗†
∗ Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA
† Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA

Abstract—Exascale computers will produce a vast array of
new resources to scientific software developers. In addition to
the expected gains in core-count concurrency, exascale systems
may feature multiple memories with various characteristics, a
more complex storage hierarchy, and user control of power
and resilience. These features will pose crippling software de-
velopment complexities if suitable programming models are not
developed. The dataflow model has the potential to greatly ease
the programming challenges at exascale by implicitly determin-
ing concurrency, automating resource selection, expressing data
transfer, handling faults, etc. In this work, we present ongoing
efforts in the Swift/T language and runtime to support emerging
exascale features.

I. INTRODUCTION

Computational applications critical to society in areas such
as materials design, climate modeling, and energy production
and distribution must be developed quickly and correctly. Such
studies are typically done via computational experiments, in
which large numbers of simulation and analysis tasks are
strung together into a workflow, formally or informally. Many
innovative programming models to handle workflow specifi-
cations are based on an implicitly parallel dataflow language
to support this model. Here, we posit that the dataflow model
has the added benefit that it can exploit features of exascale
computers, expected in ∼2023 [1].

Workflows and other outermost patterns such as parameter
sweeps, searches, and optimizations can easily be expressed
with dataflow languages. In this model, either statically or
at runtime a dataflow structure is available to the runtime
system, presenting the opportunity for many types of auto-
mated decisions for scheduling and resource management.
Workflow applications on these systems will also introduce
new requirements, such as high-performance data movement
methods for in situ data analysis, and new challenges, such as
varying reliability characterstics.

In this paper, we describe three key exascale feature areas
that will be exposed to users at the application level. First,
a more complex storage hierarchy is expected. New cache
types such as scratchpad memory may be available, and het-
erogeneous RAM systems may have differing performance and
reliability characteristics. Node-local storage may be available.
These systems are expected to be available to the application
or middleware via advanced operating system and runtime
features. Second, tighter power budgets and programmer-
controlled power scaling will likely be available. These will

StorageStorage

Variable-sized
compute tasks

Simulation

Simulation
Dynamic I/O

InstrumentsInstruments

Exascale Complex

Analysis

Filter

Dataflow

Steering

Analysis

ScientistScientist

Fig. 1. Generalized exascale workflow: Coupled simulation and analysis tasks
with large data transfer and dataflow control.

require the application level to make decisions about perfor-
mance/power tradeoffs. Third, a more complex system will
have more complex fault modes, many of which will allow
the application to recover. The dataflow model is implicitly
fault tolerant and easy to checkpoint; this integration will bring
these features to exascale workflows and long-term campaigns.

Dataflow processing thus targets the most critical problems
on the near-exascale and exascale roadmaps, such as the pro-
gramming challenge posed by very large numbers (millions)
of user threads per node, managing in situ communication,
and heterogeneous components with respect to performance,
power, and reliability. Dynamic performance behavior due to
power and faults necessitate a naturally asynchronous pro-
gramming model. Systems such as Argo [2], [3] offer rich
low-level models and APIs to manage threads and tasklets,
and DMEM [4] is investigating low-level data movement
operations. What is needed is a very high level programming
model to enable the rapid construction of applications that can
make good use of these systems, while allowing developers
to inject additional programming complexity where neces-
sary [5]. Our most general expression of this model is shown
in Figure 1, wherein multiple simulations and analysis jobs are
coupled with a dataflow programming model that enables data-
dependent processing and data transfer, including data transfer
in and out of the exascale complex.

The remainder of this work is organized as follows. In
Section II, we discuss workflows at exascale. In Section III,
we describe the dataflow model as a programming model for
exascale. In Section IV, we provide some systems challenges
expected at exascale and show how dataflow is a viable
solution. In Section V, we summarize our position.



II. WORKFLOWS AT EXASCALE

Scientific workflows are coarse-grained specifications link-
ing software components and data definitions into an over-
arching structure in pursuit of a high-level application goal.
The traditional way to express these workflows is to use a
high-level scripting language to express the complete exper-
imental structure, including data definitions, computation to
be performed, and data dependencies, for high-performance
execution. As shown in Figure 1, the experiment consists
of many possibly multinode simulations, with dynamic tasks
with varying properties and requirements performing auxiliary
tasks, with possible connection to external instrument sensors
or human users.

As an example, the Swift/T system revolutionized high-
performance workflows by supporting fully in-memory work-
flows that combine in-memory libraries and data into a com-
posite application capable of representing a complete compu-
tational experiment in a lightweight script. A key part of this
effort involved scaling the workflow enactment system into a
fully parallel runtime [6], [7] as well as developing compiler
optimizations for distributed dataflow processing [8]. The
system can thus maintain trillions of tasks, executing billions
per second across large machines such as the Blue Gene/Q or
Blue Waters.

Workflows at exascale may also be controlled by complex
algorithms such as advanced sampling methods or machine
learning. Swift/T-related efforts have integrated stateful Python
and R tasks into the workflow to enable users to drop in evolu-
tionary algorithms [9], [10] or machine learning toolkits [11]
in order to parameterize simulations and carry out model
exploration, parameter fitting, and classification. Numerical
teams are recognizing the importance of ensemble studies and
uncertainty quantification at exascale [12] and the complexity
of the software changes that are required [13]. Additionally,
concurrent-point optimization methods will become important
in simulation-driven design [12]. The application of coarse-
grained programming models and frameworks will speed
developments in these areas.

III. COMPOSITIONAL PROGRAMMING MODELS

Task-parallel programming models allow existing code (li-
braries or programs) to be rapidly developed into scalable
applications. However, they generally do not capture the high-
level workflow structure of the overall application. Concepts
such as iteration, recursion, and reduction are lost if the
user must coordinate tasks with the task-parallel library. It
is difficult to compactly express these abstractions in the
event-handling style required by the master-worker model.
Additionally, data management is lost, and data dependencies
must be encoded in an ad hoc manner.

The Swift/T language implementation represents a unique
approach to this problem. Swift transparently generates an
task-parallel ADLB program [14] from a high-level script,
which contains data definitions, data dependencies, and links
to external native code (i.e., C/C++/Fortran). This program
can then be run on an MPI-based high-performance computer.

Swift/T also has many other practical features to enable
dataflow processing at scale [15].

Other high-performance languages are beginning to inves-
tigate more dynamic, irregular patterns. Chapel, for exam-
ple, supports low-level tasks and data dependencies [16].
Charm++ supports dataflow programming through Structured
Dagger [17]. OpenMP 4.0 (c. 2013) [18] includes coarse-
grained task dependency features. The variety of these models
is great, but all are recognizing the need for higher-level
constructs that encapsulate bigger fragments of computation.
By focusing on this as a first-class problem, we can engage
with these development teams and make synergistic progress
on this computer science problem.

Bringing such systems to exascale will involve adaptations,
improvements, and accommodations for the challenges ex-
pected at exascale, such as the trend toward full-features node
operating systems; the explosion in computational concurrency
on each shared-memory node and properties of heterogeneous
processors, memories, and storage systems; the need for effi-
cient in situ processing; and fault tolerance and checkpointing
issues. The high-performance computing community faces a
challenge in solving the problem of effectively programming
such complex patterns given the novel hardware expected on
such machines.

Hierarchical programming is a natural fit for these exascale
systems challenges. Composing disparate software elements
and addressing the multilanguage problem is a key part of
the workflow problem. Since Swift is a hierarchical language,
all Swift applications use at least two languages; Swift and
the task-specific language. Our technique involves wrapping
existing codes with bindings for higher level languages, then
building composite applications that stitch together the func-
tionality into a complete experiment. The resultant hierarchi-
cal execution model provides a control system –like model
capable of adapting to dynamically changing resources and
requirements. The application program can thus be divided
into a logical plant containing low-level, performance-critical
user tasks, and control functionality in the Swift level. The
control level is capable of optimizing the resource usage by
tasks, including, e.g., task restart (Swift itself would be run
on the most reliable but not necessarily fastest resources).

A high-quality control level would require multiple features.
It would need to be able to build up the dataflow graph and
perform critical path analysis. Doing so requires some estimate
of task runtime length. It would benefit from other hints,
such as task resource requirements, reliability requirements,
restartability, etc. It would also require data about the un-
derlying system, such as the characteristics of the compute
capabilities, storage systems, network topology, etc. While an
optimal solution to the resource mapping problem is known
to be NP-hard, we think many problems can be solved well
enough by performing critical path analysis on a simplified
task runtime model, maximizing the performance of those
tasks, and filling in the rest in an ad hoc manner.

2



nn

loop?

viz frames

simulationsimulation

aggregation

RAM
Fast, unreliable 

RAM
Fast, unreliable 

Parallel FSParallel FS

clusteringclustering

ScratchpadScratchpad

buffered writes

NVRAMNVRAM
output filteroutput filter

RAM
Slow, reliable

RAM
Slow, reliable

11

22 33

Fig. 2. Complex memories for in situ processing.

IV. EXPLOITING DATAFLOW ON EXASCALE SYSTEMS

Emerging high-end hardware and operating systems are
expected to have many more features for storage, power
management, and fault tolerance. These features will have to
be controllable by the user program; under dataflow, this will
be managed by the language runtime, which will be able to
use these features because of the program structure exposed.
This greatly eases the burden on the scientific programmer,
who writes parallel task components, allowing the higher level
system to manage emerging system features.

A. Complex storage architectures
Storage systems on exascale machines are expected to

be more complex, with nonvolatile random access memory
(NVRAM) at multiple possible locations to boost I/O [19].
If this is available to programmers, it will offer a useful
medium for complex patterns that mingle RAM with NVRAM,
intersperse complex checkpointing strategies, and enable users
to program against data that may be managed by the runtime.

Consider the model workflow shown in Figure 2, in which
in situ simulation data is collected by three data-dependent
pipelines. Pipeline 1 performs k-Means clustering on some
simulation output parameter, a method that could greatly
benefit from scratchpads [20]. The runtime would thus allocate
scratchpad memories to these tasks where possible and pro-
vision memory near to allocated processors. Other tasks will
be allocated remaining RAM. Noncritical tasks, such as those
that aggregate data for human visualization 2 , or otherwise
flagged as noncritical (e.g., tasks that are I/O-bound), could
be given unreliable RAM allocations backed by NVRAM for
capacity. An output filter that looks for interesting events 3
could be backed by slower but more reliable RAM so that
statistics about such events are trustworthy.

In other patterns, data chunks could loaded from the filesys-
tem, possibly directly from their object representations [21],
possibly via collective operations to NVRAM [22]. User
dataflow code could carry out an explicit checkpoint by creat-
ing a data dependency to disk. If this is the data item required
by the subsequent task, progress will block on the checkpoint,
although other tasks could continue to make progress. Depen-
dencies on human input could also be specified.

many tasks

slack task
start

G
ra

ph
 s

tr
uc

tu
re

H
P

C
 c

om
pl

e
x

exit

long tasklong task

iteration

Cool
rack

Many
core
rack

GPU
rack

scheduling / distributionscheduling / distribution

Fig. 3. Power-aware dataflow scheduling.

High-quality dataflow runtimes capable of managing such
workloads would have to support a broad range of storage
policies. These would include explicit storage locations (RAM,
NVRAM, local FS, global FS), as well as runtime-managed
locations (LRU, etc.). These would enable a coarse-grained
scratchpad memory system that could strike a good tradeoff
between programmer control of all locality and total system
control (as in MapReduce [23]).

B. Power management

Power is expected to be a major constraint in the design
of exascale computers. Internode, intercabinet, and node-to-
storage costs (for both latency and energy) will be varied and
inter-dependent. Programmers will be confronted with com-
plex considerations for task and data placement and scheduling
to reduce communication volume, distance, and energy use. In
the case of an ensemble application coordinated via dataflow,
the problem is easier to address automatically.

The dataflow model also makes possible the automatic
reduction of communication volume and distance, and the
determination of when functional units can be quiesced to save
energy. As shown in Figure 3, the data dependency graph and
task encapsulation expressed in hierarchical dataflow provide
rich information about requirements. Based on their place in
the critical path model, tasks can be allocated to appropriate
processor types running in appropriate power modes. Data
storage enhancements discussed previously are also relevant
here, because algorithms for placing tasks and data in more
optimal proximity with respect to power would reduce the
energy cost of data movement.

C. Fault tolerance, resilience, and elasticity

In the dataflow model, fault tolerance and elasticity are con-
nected. Software fault tolerance will be required on emerging
exascale machines. Elasticity is desirable for in situ analysis
workflows in which the amount of work for analysis tasks
varies unpredictably over time. In both cases, the number
of nodes available to the overall application will change as

3



partitions are added, are lost, or change size. The dataflow
model allows the runtime system to maintain application
state and migrate work to new task executors (workers),
given information about faults from emerging OS and/or MPI
features [24].

The first challenge is to allow the dataflow program to
gain or lose workers. This is relatively easy since the data
dependency specification on each task allows task restart
(while practical user tasks may have side effects, these are
outside the dataflow specification). The second challenge is to
allow the dataflow processing engine to be just as resilient and
elastic. This work will result in novel computer science contri-
butions. Additionally, high-level user-managed fault response
through language extensions such as exception handling and/or
optional values [25], [26] could be viable. This challenging
area would determine the implications of these models in a
distributed-memory language.

Many optimization methodologies require underlying tech-
niques that are available through low-level programming
but are not yet provided by higher-level dataflow program-
ming. Some examples are motivated by the branch-and-bound
method, which solves an integer optimization problem by
solving the “relaxed” continuous problem and updates bounds
on the optimal value and relevant search region. Individual
branches (tasks) pursuing a solution in one region may be
affected, or even eliminated, by updates to other regions. This
is difficult to implement in the dataflow model with no task
side effects. However, many applications have such patterns,
and a high-productivity model that mingles dataflow with the
capability to implement these patterns is highly desirable.

V. SUMMARY

In this paper we have outlined multiple potential applica-
tions of dataflow-based programming and runtime systems to
the challenges of exascale computing. We described how a
coarse-grained dataflow abstraction can capture the overarch-
ing patterns in exascale workflows, particularly in describing
data-dependent analysis tasks attached to large-scale simula-
tion ensembles. This in situ data transmission and analysis
model enables a highly productive programming model, where
components can be easily coupled and decoupled for varying
computational experiments. We also described how this pro-
gramming model allows the runtime system to automatically
make computation and data placement decisions relevant to
multiple exascale systems challenges.

Our position is that exascale computing offers an exciting
opportunity for dataflow processing to solve challenges con-
ventionally addressed by systems designers and implementors.
The Swift/T system is but one attempt to address these
problems, and we invite discussion at the DFM workshop
about this research and development area.

REFERENCES

[1] T. Trader, “Paul Messina shares deep dive into US exascale roadmap,”
June 2016, in HPCwire, https://www.hpcwire.com/2016/06/14/us-
carves-path-capable-exascale-computing.

[2] H. Lu, S. Seo, and P. Balaji, “MPI+ULT: Overlapping communication
and computation with user-level threads,” in Proc. HPCC, 2015.

[3] S. Perarnau, R. Thakur, K. Iskra, K. Raffenetti, F. Cappello, R. Gupta,
P. Beckman, M. Snir, H. Hoffmann, M. Schulz, and B. Rountree,
“Distributed monitoring and management of exascale systems in the
Argo project,” in Distributed Applications and Interoperable Systems,
ser. Lecture Notes in Computer Science, A. Bessani and S. Bouchenak,
Eds. Springer International Publishing, 2015, vol. 9038, pp. 173–178.

[4] A. J. Peña and P. Balaji, “Toward the efficient use of multiple explicitly
managed memory subsystems,” in Cluster, 2014.

[5] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, 2015.

[6] J. M. Wozniak, T. G. Armstrong, M. Wilde, K. Maheshwari, D. S.
Katz, M. Ripeanu, E. L. Lusk, and I. T. Foster, “Turbine: A distributed-
memory dataflow engine for extreme-scale many-task applications,” in
Proc. Workshop on Scalable Workflow Enactment Engines and Tech-
nologies, 2012.

[7] J. M. Wozniak, T. G. Armstrong, K. Maheshwari, E. L. Lusk, D. S. Katz,
M. Wilde, and I. T. Foster, “Turbine: A distributed-memory dataflow
engine for high performance many-task applications,” Fundamenta In-
formaticae, vol. 28, no. 3, 2013.

[8] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster, “Compiler
techniques for massively scalable implicit task parallelism,” in Proc. SC,
2014.

[9] J. M. Wozniak, T. G. Armstrong, K. C. Maheshwari, D. S. Katz,
M. Wilde, and I. T. Foster, “Interlanguage parallel scripting for
distributed-memory scientific computing,” in WORKS ’15: Proceedings
of the 10th Workshop in Support of Large-Scale Science, 2015.

[10] J. Ozik, N. Collier, and J. M. Wozniak, “Many resident task computing
in support of dynamic ensemble computations,” in Proc. MTAGS at SC,
2015.

[11] ——, “From desktop to large-scale model exploration with Swift/T,” in
Proc. Winter Simulation Conference, 2016.

[12] DOE ASCR Exascale Mathematics Working Group, “Applied mathe-
matics research for exascale computing,” 2014.

[13] E. Phipps, H. C. Edwards, and J. Hu, “Realizing exascale performance
for uncertainty quantification,” in DOE Workshop on Applied Mathe-
matics Research for Exascale Computing, 2013.

[14] E. L. Lusk, S. C. Pieper, and R. M. Butler, “More scalability, less
pain: A simple programming model and its implementation for extreme
computing,” SciDAC Review, vol. 17, 2010.

[15] J. M. Wozniak, M. Wilde, and I. T. Foster, “Language features for
scalable distributed-memory dataflow computing,” in Proc. Data-Flow
Execution Models for Extreme-Scale Computing at PACT, 2014.

[16] Cray Inc., “Chapel language specification version 0.96,” available at
http://chapel.cray.com.

[17] L. V. Kalé and M. A. Bhandarkar, “Structured Dagger: A coordination
language for message-driven programming,” in Proc. Euro-Par’96 Par-
allel Processing, 1996.

[18] “OpenMP 4.0 complete specifications,” available at http://openmp.org.
[19] S. Ahern, “Scientific discovery at the exascale: Report from the DOE

ASCR 2011 Workshop on Exascale Data Management, Analysis, and
Visualization,” 2012.

[20] M. A. Bender, J. Berry, S. D. Hammond, B. Moore, B. Moseley, and
C. A. Phillips, “k-means clustering on two-level memory systems,” in
Proc. MEMSYS, 2015.

[21] C. Karakoyunlu, D. Kimpe, P. Carns, K. Harms, R. Ross, and L. Ward,
“Towards a unified object storage foundation for scalable storage sys-
tems,” in Proc. IASDS at Cluster, 2013.

[22] J. M. Wozniak, H. Sharma, T. G. Armstrong, M. Wilde, J. D. Almer, and
I. Foster, “Big data staging with MPI-IO for interactive X-ray science,”
in Proc. Big Data Computing, 2014.

[23] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Proceedings on Operating Systems Design and
Implementation, 2004.

[24] “BEACON and EXPOSE: Backplanes for the ARGO system,”
http://www.argo-osr.org/overview/backplane.

[25] “Data.Maybe reference,” optional values in Haskell are described here:
https://hackage.haskell.org/package/base-4.2.0.1/docs/Data-Maybe.html.

[26] “Swift programming guide,” section on Optional Chaining. Note that
this is the Apple product named Swift and is not related to the Swift
language described in this paper.

4


